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ABSTRACT 

esta b 

~ 

A sufficient condition for the stability o f  a swir 

9ao75 

ing flow in  a circular magnetic field i s  

ished. A stronger sufficient condition for stabil ty i s  also given on physical grounds and by 

an approximate mathematical proof. Detailed results for small spacing between the cylinders are 

given. It i s  shown that the stronger sufficient condition for stability i s  exact for small spacings. 

A new branch of solution which corresponds to negative critical Taylor number i s  calculated. 

An approximate solution for a positive do i s  also given. A rather striking phenomenon i s  

that there i s  a case which the unstable circulatary flow field i s  counterbalanced by the un- 

stable circular magnetic field such that the combined field makes a stable flow. The dual roles 

of  viscosity and magnetic diffusivity and their physical mechanism are also discussed. 
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1. INTRODUCTION 

The stability of swirling flow in  a circular magnetic field was first investigated by 

1 
Michael 

zero viscosity and infinite electrical conductivity. Taylor 

homogeneous non-conducting fluid between rotating cylinders, viscosity i s  always stabilizing. 

Thus,one i s  inclined to conjecture that Michael's criterion w i l l  also hold true i n  a digsipative 

medium of finite viscosity and magnetic diffusivity. It i s  found, however, that this i s  not 

so for the present case. The viscosity 9 

who established a necessary and sufficient condition for the stability of fluids with 

2 
showed that in  the case of flow of 

and the magnetic diffusivity 7 play the diffusive 

role as well as the dissipative one. This diffusive role can sometime very well be destabilizing. 

Therefore, the magnetic Prandtl number i s  important for the instability of real fluids. 

Accordingly, a new criterion i s  needed for the stability of a dissipative medium. This paper 

provides such a criterion. 

3 

2.'/ 7 
.e. 

Lai studied a more complicated problem with the present one as a special case 

when the temperature variation was absent, He carried out some detailed calculations 

for the case of smaii spacing and found that both the viscosity and magnetic dittusivity have 

dual roles. However, he neglected one branch of solution which i s  quite pertinent to the 

present problem, Therefore, the results and conclusions derived from his calculations should 

be clarified, This paper contains such a clarification. 

The instability situation here i s  almost exactly the same as i n  the case of gravitational 
5 

instability discovered by Stommel, et aI4, and the case of thermal instability by Yih-. 

1.  D. H. Michiel, Mathenatika 1, 45-50(1954). 
2. G. 1 .  Taylor, Phil. Trans, Roy, SOC. London A 223, 289-343(1923). 
3. W. Lai, Phys. Fluids 5, 560-566(1962). 
4. H. Stommel, A. B. A&, and D. Blanchard, Deep-sea Research 3, 152-153(1956). 
5. C.-S, Yih, Phys. Fluids 4, 806-811(1961). 

- 
-- 

- 
- 
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In the present case, the balance of the stabilizing and destabilizing effects o f  the centrifugal 

force and the centripetal magnetic force i s  through the diffusive effects of the momentum 

diffusivity 3 and the magnetic diffusivity 7 . Therefore, i t  should be emphasized 

here that caution must be taken in applying the stability criteria derived from a non- 

dissipative medium to that of a real fluid, especially when two or more diffusive coefficients 

are involved in  the problem. 

6 
The present problem was also studied by Edmonds , with Fermi boundary conditions 

of perfectly conducting cylinders. He has made a few calculations for some special cases. 

In the present investigation, the principle of the exchange of stabilities i s  assumed for the 

small spacing calculations. It i s  hoped that a subsequent paper w i l l  present some calculations 

for the case of  overstability and of large spacing between cylinders. 

2. 

For an incompressible, 

are : 

GENERAL ANALYSIS 

FORMULATION OF THE PROBLEM 

viscous, electrically conducting fluid, the governing equations 

V*? = 0 ) 

v-H - 0, 
wu 

(2.3j 

6. F .N.  Edmonds, Jr., Phys. Fluids I, 30-41(1958). - 
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where U i s  the fluid velocity, 2, the kinematic viscosity, 7 =1/(471p, ) the 
M 

magnetic diffusivity; p l  the magnetic permeability, and 

We have written ,tJ = y l (  /u//471f) 

H i s  the magnetic field intensity, p i s  fluid pressure, f’ i s  uniform density and 
A’ 

6 the electrical conductivity. 

, where 
1/2 

i and Q = I_H12 + p/f + bl 

i 6 

i s  the potential per unit mass of the conservative body force. In the derivation of b 
(1) and (4), it i s  assumed that the net charge density i s  zero, and that 9 ,  0;- and 

pl  are constant. 

We adopt the cylindrical coordinate system ( r, 8, z ). If axisymmetry i s  

assumed, with ( Ur, u ~ ,  u,) and ( H,, Hg, Hz ) denoting the components of the velocity and 

of the normalized magnetic intensity (which i s  actually the Alfvhn speed) in  the radial r, the 

transverse 0 and the axial z , directions, respectively, Eqs. (1) to (4) become 

(2. lo) 

(2.11) 
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(2.12) 

fn which 

It may be readily verified that the governing equations admit the stationary 

solution 

provided 

and 

The general solutions of  Eqs. (2.15) and (2.16) with Y f o and + 0 are '7 

and 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2 0 17) 

H e r r )  = A, r + &/r = L r , (2.18) 

where fi and L are angular( velocity and angular magnetic intensity respectively, 

and A,  , B 1  , A2 and B are constants, Thus, the presence of a circular magnetic 2 

f ield does not affect the distribution of the swirling velocity which i s  permissible i n  the 

absence of the magnetic field; likewise, the reverse i s  also true. The constants A ,  and 

B, in  the solution (2.17) are related to the angular velocities a, and R, of 



b 
J 
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the two cylinders confining the fluid; they are given by 

where 

(2.19) 

The constants A2 and B2 i n  (2.18) can also be related to the magnetic field at R 1  

and R2 i n  a similar manner, but i t  i s  more practical to express them in  terms of  electrical currents. 

Actually the magnetic field i n  (2.18) can be produced by electrical currents flowing i n  the 

axial direction. A simple and practical example i s  an axisymmetric axial current J confined 

to the inner cylinder and an axial current of uniform density Jo confined between the two 

cylinders, Thus we have 

2 
where Jc = J/lrR1 i s  the average current density confined to the inner cylinder. It 

f- I I 
1 0 1  lows that 

(2.20) 

(2.21) 

A distrubance of the undistrubed state w i l l  give rise to small velocity components 

( Ur,  Ue ,  u,), and a deviation of magnetic field denoted by ( hr, he , hz ). Assuming that 

the various perturbations are axisymmetsic and independent of 

(2.5)-(2.12) the linearized equations 

6' , we obtained from 

(2.22) 

(2.23) 
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(2.24) 

(2 e 25) 

(2.26) 

(2.28) 

(2.29) 

i n  which q = Hob, + P , / f  with P, denoting the pressure perturbation. 

From the form of Eqs. (2.25) and (2.27) we can conclude that h,. and 

hz 
Since the stability i s  characterized by undamped disturbances, we wi I I , therefore, set 

h,. and hr equal to zero without loss of generality. 

w i l l  eventually be damped out i f  they are not ini t ial ly everywhere zero (see 7) .  

By analysing the disturbance into normal modes, we seek solutions of the 

foregoing equations which are of the form 

For solutions of the form (2.30), Eqs. (2.22) - (2.29) become, upon eliminating the 

(2.31) 

7. C.-S. Yih, Phys. Fluids 2 ,  - 125-130 (1959). 



(2.32) 

(2.33) 

where 

- ,  

(2.34) 

and Pr i s  the magnetic Prandtl number Y/ )7  . The boundary conditions for non-conducting 

wal Is are 

3. SUFFICIENT CONDITION FOR STABILITY 

A sufficient condition for stability can be given for the present case on a 

8 
mathematical ground, in the manner of Synge . 

Multiplying Eq. (2.31) by ru* (complex conjugate i s  denoted by a superscript*) and 

integrating (by parts i f  necessary) with respect to r between R I  and R2, we have, 

upon utilization of the boundary conditions in (2.35), 

8. J. L. Synge, Proc. Roy.Soc. A, 167, 250-256(1938). - -  
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where we have denoted certain positive definite integrals as follows: 

Similarly, multiplying (2.32) by -2k2KU*/DK and (2.33) by 

and integrating over the range, we obtain, respectively, 

(3.3) 

Let us add to (3.l), (3.3) and (3.4) their complex conjugates and then add them together, we 

obtain 

E t G - f t J ’  t ( W t N ” )  = O (3.5) 

where c,. i s  the real part of c and 

E = -Iz + 2d21, + k4I0 7 0  J (3.6) 

(3.7) 



1 
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From (3.9) i t  fol lows that 

= Alr2 + 0, and L = AZ t & / r ‘  
we have, upon utilizing the boundary conditions, 

and 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

Now i f  the steady flow and magnetic field satisfy, respectively, 

DIC2, 0 and D L 2  \< 0 I (3.16) 

then 

F > o ,  J > O  and w+w* g o .  
It follows from Eq. (3.5) that cr i s  negative , and hence the steady motion i s  stable. Therefore , 

(3.16) i s  a sufficient condition for stability o f  the present case. 

It i s  noted here that (3.16) i s  also a sufficient condition for stability of an infinite 

fluid. Since, when the inner cylinder i s  removed , the boundary conditions at r = o are 

u = = g = o , i f  u, v, w and g are free from singularity there. Noting that the limite o f  

integration now being from zero to R2, and following the similar procedure,the condition (3.16) 

can indeed be obtained. If we also let R 2 - 0 0 ,  the fluid becomes infinite and thus we have 

established the sufficient condition for stability o f  an infinite fluid. 
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For the present problem, two particular cases can readily be observed: 

Case 1. @) Zero-Magnetic Field (L = O),or (B) Constant Angular Magnetic Intensity 

(L= constant) 

In this case, (3.16) reduces to 

& ( l J * r f > O  / (3.17) 

for stability. Here the constant angular magnetic field 
9 

which i s  the Rayleigh's criterion 

i s  neutrally stable, and does not affect the stability of circulatory motion. 

Case * *  (A) Stationary Fluid (K = 0), or (B) Constant Angular Momentum (Pure Vortex, 

K = constant). 

In this case, (3.16) reduces to 

10 
which i s  essentially the Yih's criterion for stability. Yih has expressed his criterion, 

however, in terms of electrical currents which reads 

JC 7 Je or 

A careful examination revelas that (3.19) needs a supplementary condition 

JO 7 0 .  

(3 . ~18) 

(3.19) 

(3.20) 

Since the criterion (3.18) requires that for stability, the magnitude of the angular magnetic field 

must decrease outward monotornically. This condition imples that 

9. 
10. C.-S. Yih, J. Fluid Mech. - 5 ,  a6-444 (1959). 

Lord Rayleigh, Scientific paper 6, 447-453, Cambridge University Press (1916). 
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4 > I  (3.21) 
L2 

which leads to 

(3.22) 

1 Indeed, criterion (3.22) i s  different from Yih's criterion (3.19) i f  Jo < 0 . Henceforth, we 

wi I I refer Yih's criterion to (3.22), or (3.19) plus (3.20). 

4. A STRONGER SUFFICIENT CONDITION FOR STABILITY 

In section 3, a sufficient condition for stability has been established which i s  the 

combined criterion of Rayleigh's and Yih's. This criterion i s  rather weak because i t  requires 

the stability of both velocity field and magnetic field in  order to insure the stability of the 

whole field. Actually, stability i s  sti l l  possible when the stablizing effect of one field over- 

comes the destablizing effect of the other. 

1 
For fluids of zero viscosity and electrical resistivity, Michael has established 

a necessary and sufficient condition for stability 

comparing (4.1) with (3.16) i t  i s  readily confirmed that when the stablizing effect of one field 

overcomes the destablizing one, stabiiity i s  indeed insured. We wil I now proceed to investigate 

the validity of the condition (4.1) when the medium i s  dissipative, although a dissipative medium 

usually tends to damp out small disturbances. Before we turn on resistivities, i t  w i l l  be advisable 

to know the physical background o f  the criterion (4.1). 

When Hr = Hz = 7'/ = L' = 0, Eqs. (2.5)-(2.12) then become 
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D 4 aQ 
D t  a z  I 
- = - -  (4.4) 

(4.5) 

Therefore, the angular momentum K (=cjBr) and the angular magnetic field L (= HB /r) are 

conserved quantities for a given fluid element in  this ideal case. And the motions i n  the radial 

and the axial directions take place as though (/e and H# were absent and, instead, a body 

force (Ut- f f i ) / r  were acting in  the radial direction. 

Suppose now that a fluid element at 5 with transverse velocity U g ,  i s  

displaced to a new position r2(=r1 + f ), while the velocity becomes C j 8 , ~  . Hence a small 

radial displacement 3 leads to a velocity discontinuity at r2 

(4.6) 

According to our notation, this i s  the perturbation velocity ue at r2 , or uer . ' Similarly, the 

f is magnetic intensity discontinuity at 1-2 due to a small displacement 

hez = Hetz - = L,G - LzG = - [fi) f d r  r 
Since the body force is intrinsic property of fluid element while the total pressure 

gradient is determined by the surrounding environment. The body force ( U t  -ff i)/r , 

(4.7) 

therefore, must be balanced by the pressure gradient as shown in  Eq. (4.2),with the perturbation 

term Dur/Dt neglected, If a ring of fluid at r1  i s  displaced to r2 = rr + 3 4 (with 5 7 0 ), 

the body force becomes 
9 

r2 TZ r, 
The prevailing pressure gradient at r3 i s ,  by Eq. (4.2), 

r, G 
. which i s  larger than the body force i n  (4.8) i f  

(4.8) 

(4.9) 
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Uez ugz He2 he2 

f2 r-2 
4 

Therefore the net restoring forces are proportional to the discontinuities ug and hB 

respectively. I f  the relations i n  (4.6) and (4.7) are substituted, (4.10) becomes 

(4.10) 

(4. I I) 

In this case, the fluid element wi l l  be forced back to i t s  init ial position, and the motion i s  

stable. 
11 

The above physical argument i s  essentially an extension of Von Karman's to the 

9 conducting fluid. Rayleigh treated these ideas from the point o f  view of the minimum energy. 

With the body force (uo ' - / f ; ) / r ,  we may associate with each fluid element a "potential 

energy"f(K /r + L r )/2. This potential energy i s  clearly the kinetic and magnetic energy 

of circulatory flow and magnetic field. Therefore, i n  this case, the equilibrium i s  stable only i f  

the potential energy i s  a minimum. The total energy (kinetic plus magnetic) associated with a 

given fluid ring at a distance r from the axis i s  proportional to 

2 2 2 2  

I 

Suppose now that two rings o f  fluid of equal areas ( r1 dr, = r d r ) are interchanged. The 

corresponding increment i n  the total energy i s  proportional to 

2 2  

where lJQ21 and H 

'2. 

are the velocity and magnetic intensity at r1 , originating from 
e21 

Hence the perturbation velocity and magnetic intensity at r1 are 

(4.12) 

1 1 .  Th. von Karman, Proc. 4th Int.Congr. Appl.Mech., Cambridge, England, 54-91(1934). 
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Substitution into (4,12) gives 

which i s  positive i f  

(4.13) 

(4.14) 

(4.15) 

(4.16) 

Hence > 0 makes the total energy a minimum and thus ensure stability. 

If the fluid has now non-zero resistivities, the situation i s  somewhat different. The 

viscosity Y and the magnetic diffusivity 7 are responsible for diffusion, in  addition to 

dissipation, of  momentum and magnetic intensity respectively. The diffusive effect i s  by no 

means always stabilizing. In fact, i t  can very well be destabilizing. We wi l l  consider the 

following two cases. 

4.1 inability Sets in  as a Stationary Secotdary Flow 

When the resistivities of the medium are considered the linearized perturbation equations 

are, from (2.23) and (2.26), 

consider a steady motion, with wave length A, along z -direction, which i s  so 

slow that diffusive effects cannot be ignored. Such a motion leads ultimately to a state 

i n  which == 0 - In th is  steady state, (4.17) and (4.18) become at - a t  

(4.. 17) 

(4.18) 

(4.19) 

(4.20) 
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Comparing (4.19) and (4.20) with (4.6) and (4.7), we conclude that i t  i s  now 3 U e  and yh8 I 
that are proportional, respectively, to -(d/vcrr)j/r and - ( d L / d r )  5 r 
is, because of  the diffusive effects of these dissipative coefficients I ug and 

multiplied, respectively, by quantities proportional to l/p and 1/7 , 
1 

ue2 - 
- (He/z - H B ~ )  I he2 - 
- V ( % 2  - U@2) I 

1 

Accordingly, the criterion (4.11) becomes 

. 

(4.21) 

(4.22) 

(4.23) 

A similar physical argument due to Rayleigh wi l l  lead to the same conclusion. Therefore, we have 

established a sufficient condition for stability of stationary convective motion i n  a diffusive 

medi um . 

4.2 Instability Sets-in as Oscillations of Increasing Amplitude (Overstability) 

Suppose that, i n  a non-dissipative medium, the motion i s  i n  neutral oscillation. Then, 

the restoring force i s  balanced by the instability force in  (4.10). Eqs. (4.17) and (4.18) 

without diffusion are 

(4.24) 

(4.25) 

If we now turn on the diffusion mechanism, diffusion then starts. The right sides of Eqs. (4.24) and 

(4.25) are no longer zero, and ue and hB wi l l  be modified accordfngly. During any 

half-oscilatign, the diffusion term in (4.17) reduces the inequalities of velocity ue from 

which the instability (or restoring) force arise by a fraction proportional to V ; the magnetic 

diffusion term in  (4.18) similarly reduces the disturbance of  the magnetic field by a fraction 
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proportional to 7 , Thus the total restoring force i s  largeras the material i s  pushed back to i t s  

equilibrium position than when i t  i s  traveling out, provided that 

or 

In this case, the fluid element wi l l  oscillate with increasing amplitude, and the motion i s  

unstable, Therefore, the sufficient condition for stability of  this oscillatory motion i s  

(4.26) 

It i s  noted here that Michael's criterion (4.1) i s  actually a special case of  (4.23) and 

, with t'/7 - 1; that is, the diffusive effects 7 - O  (4.27) when p ---* 0 and 

are equally inefficient. From the forms of (4.23) and (4.27) we may observe that only the 

diffusive effects have been included, since they only show the relative effectiveness of  the 

di f fusi ve me chan ism be tween V and ';I . Aside from being agents for momentum 

and magnetic diffusion, viscosity and magnetic diffusivity are always dissipative agents responsible 

for the eventual conversion of  kinetic and magnetic energy into heat, Thus, as far as the 

diuipative roles are canverned, the diffusive coefficients are always stabilizing. However, 

caution must bo taken to distinguish diffusion from dissipation, which w i l l  be discussed in  

Section 9 ,  

5 .  APPROXIMATE MATHEMATICAL PROOF 

In the last section, a sufficient condition for stability has been established on 

physical grounds, In this section, a mathematical proof wi l l  be given, although an exact 

proof i s  s t i l l  lacking at this time, Nevertheless, the following treatment is, 

i n  some way, quite illuminating and furnishes an independent proof o f  establishing 
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the sufficient condition for stability. 

5.1 Stationary-Secondary Flow 

In this case, the'principle of exchange of stabilities' i s  valid and the marginal state 

i s  marked by vanishing c. Eqs. (2.31) - (2.33) become, for c = 0, 

I f  we let 

Eqs. (5.2) and (5.3) then become 

( D & - k ' ) u /  = U I 

(5.1) 

(5.2) 

(5.3) 

Eq. (5.7) then becomes 

( D D + - x 1 ) B I  - Le (5.9) 

jl are The boundary conditions for and 

(5.10) r = /?I and r - R2. 2'1 = % I =  O at 

Since the differential equations and the boundary conditions are identical for 5 and rl and the 

left sides of (5.6) and (5.9) are not identically zero, we conclude that 
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. 

“i=t, - (5.11) 

We observe that the approximation in  (5.8) i s  excellent i f  the spacing between cyclinders 

i s  small compared with the average radius, thus making r essentially a constant throughout the 

range. Having obtained the approximate relation in (5.1 l ) ,  we now go back to the exact 

equations (5.1) - (5.3). Since Eqs. (5-1)-(5-3) are the special case, with c =O, of Eqs. (2.31)- 

(2.33), the corresponding equation to Eq. (3.5) then i s  

E + S t ( M / + \ F c / + ) - O )  (5.12) 

where E, S and Ware still given in  Eqs. (3.6) - (3.9).  

(5.5) are substituted, we have 

If the relations in (5. l l ) ,  (5.4) and 

It follows immediately that the Eq. (5.12) can be possible only i f  

(5.13) 

(5.14) 

(5.15) 
I 

In other words, i f  

stable or entirely unstable when 

motion i s  stable i f  DK 

satisfies criterion (3.16), and let the flow and magnetic fields vary continuously. Accordingly, 

4 > 0 , no marginal state i s  possible; that is, the motion i s  either entirely 

@ > 0 However, criterion (3.16) assures us that the 

> 0 and DL < 0. I f  we now start out with a stable motion which 
2 2 

81 wi l l  also vary continously. Since the governing equations are not singular with respect to 
1 

2 2 $ , DK and DL , any velocity and magnetic fields corresponding to positive @ can be 

obtained by this continuously varying process during which 

the marginal state i s  never reached and thus, the motion i s  always stable. We, therefore, 

have rederived criterion (4.23) by an independent argument. 

@ always remains positive. Hence, 
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5.2 Overstabi I i ty 

In thfs  case the instability sets i n  as an oscillatory motion. We assume now that, during 

the oscillatory motion, the diffusion term i s  not important in  (2.32) and (2.33), thus we have 

With v and g related in this manner, Eq.  (3.5) now becomes 

where E i s  s t i l l  given by (3.6), and 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

It follows that Eq. (5.18) can be possible only i f  

By a similar argument as that i n  

stability in  this case i s  

3 5.1, we can conclude that the sufficient condition for 

which i s  the same as ciiierion (4.27). 

CASE OF SMALL SPACING 

6. REDUCTION TO THE CASE OF SMALL SPACING 

(5.22) 

For small spacing of cylinders, we introduce the following dimensionless parameters: 
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If  we now make these substitutions in  (2.31) - (2.33) and neglect higher powers of the small 

parameters d/Rj , we obtain 

where 

if .we le; 

Eqs. (6.2) - (6.4) become 

(6.5) 
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(DZ-a2-  P,rr)jl = u 
(6 .~9) 

i s  the Hartman number. We wi l l  only consider the case that 
1/2 

where M = ( S p  Jj,) 

instability sets in  as a stationary secondary flow. Hence, assuming that for the marginal 

stability i s  zero, Eqs. (6.7) - (6.9) become 

The boundary conditions for non-conducting wall are 

at - -8 - *  f = O  and 1- r .  
It follows from Eqs. (6.11) and (6.12) and the boundary conditions (6.13) that 

“;=, . 

Eqs. (6,lO) - (6.12) then become 

2 
( D 2 - a z )  LL = - h T ( I  + & f ) q  1 

where 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.. 15) 

( D 2 - a 2 ) I / j  = u 1 .  (6.16) 

T - T ] + L  / 

7-2 (6.18) 
T I 

i n  which T i s  the generalized Taylor number. 

The boundary conditions are s t i l l  specified by E q .  (6.13). Comparing Eqs.  (6.15) and 
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(6.16) with that treated by Chandrasekhar I*, we see that they are identical except the 

definitions of  T and d o  . 2 
In his case, T i s  the Taylor number - 4&R and i s  

the value of (n&,)-l. Chandrasekhar found the positive critical value of  T for a variety o f  

values of OCO , al l  corresponding to negative values of OC, . Yih '.," and Lai have 

calculated the critical values of T for some positive values of a0 , however, one branch of 

3 

solution which corresponds to negative 

Equations (6.15) and (6.16) with the boundary conditions (6.13) are now solved numerically for 

both positive and negative critical T corresponding to the entire range of  

CYo and negative critical T has been entirely neglected. 

. 

7. NUMERICAL RESULTS AND THE SUFFICIENT CONDITION FOR STABILITY 

To solve the present characteristic value problem, we have followed the method derived 

12,13 
by Chandrasekhar 

wave number a, for the entire range of g o  . The coefficient 6- ( = cm/(m'++a2)') for 

. Table I includes the critical Taylor number Tc, and the associated 
' 

the marginal state i n  the expansion for u i s  also given13. The (Tc, No) and the ( ~ ( T c ) ,  OC,] - 
relationships are further illustrated in Figs. 1 and 2. Fig, 3 shows the profile o f  the velocity 

u for various a, , from which the corresponding cell pattern can easily be obtained. 

7.1 (A) Zero-Magnetic Field (L = 0), or (8) Constant Angular Magnetic Intensity (L = constant). 

In this case, oC2 and T2 are zero, thus do and T reduce to and TI . 
According to (6.5) we have 

which follows that 

. .  
12. S. Chandrasekhar, Mathematika 1, 5-13 (1954). 
'13.. S. Chandrasekhar, Hydrodynamic-and 'Hydromagnetic stab; lity, Oxford University 

Press, 298-324( 1% 1). 
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and 

3 > 0 corresponds to ut< 0 1 

T; < o  corresponds to d-1 > 0 . (7.2) 

Thereforetin this case, the Taylor numberexists only; i n  the second and fourth quadrants i n  the 

( g0-7) plane as shown i n  Fig. 4. Here no critical Taylor number exists in  the fourth 

guadrant, hence, positive 

criterion, which states that the flow i s  stable i f  

corresponds to stability. This i s  i n  consistant with the Rayleigh's 

& . I .  Kl 
(7.3) i s  equivalent to 

which leads to 
I 

and by (7.2) 

(7.3) 

(7.4) 

Thus according to Rayleigh criterion no negative critical Taylor number exists for xi >O. 

8.2 (A) Stationary Fluid (K = 0), or (B) Constant Angular Momentum (Pure Vortex, K = constant) 

In this case oi, and TI are zero, thus do and T reduce to oC2 and T2. 

According to (6.5) we have 
- 2  

o c 2 ' - a ( r - T )  KI , 
R2 

which follows that 

I '  

12 > 0 corresponds to & 2 > 0  I 

and T2 0 corresponds to o c 2 < 0 .  

(7.5) 

(7.6) 

Therefore, in  this case, the Taylor number exists only in  the first and third quadrants in  the 
I 

(%-T) plane as shown in  Fig. 4. Here no critical Taylor number exists for a,) -1 i n  the third 

quadrants, hence, O > Q - l  corresponds to stability. This i s  in consistant with Yih's criterion, 
9 

which states that the fluid i s  stable if 
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Ll - > I  * 
Lz 

(7.7) i s  equivalent to 

(7.7) 

(7.8) 

which leads to 

and by (7.6) 

Therefore, according to Yih‘s criterion, no negati ve critical Taylor number exists for 0 > a > - 1 .  

7.3 General Case (T # 0, T2 # 0) 

Combine the above two cases we can conclude that, i n  this general case, the Taylor 

number exists in  a l l  four quadrants of the (oC,-T) plane as shown in  Fig. 4. Since we have defined 

i t  follows that 

At the inner wall, V =  1, (7.93 becomes 

(7.9) 

(7.10) 

We should observe that (7.10) i s  exact which does not involve any small spacing approximations. 

Comparing (7.19) with (6.17), we obtain 

v 
= -2 T . 

Now, for small spacing approximation, Eq. (7.9) becomes 

$ = - . . - 7 ( p g 0 j ) ,  3 
d4 

From (7.11) and (7.12) we can conclude that 

(7.11) 

(7.12) 

r: T <  0 and d o  7 - I  (7.13) 

i f  $> 0 for the entire range of  3 , In this case, the flow i s  stable since, from the previous 

argument, no negative crit ical Taylor number exists for the range do> -1. Therefore, we have 
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established exactly the criterion (4.23) for stability for the case of spacing spacing. 

An interesting fact should be observed that for the non-magnetic couette flow, i f  the 

small spacing result yields that the flow i s  stable, then the large spacing result wi l l  always 

predict a stable one. But the reverse i s  not always true a This point i s  demonstrated in Fig. 5. 

In this case, we have defined 

4Ai 6, fl; - - 4 fi; R T  ( 1-p) ( I-+/,") 
v2  ( 1  - qz T = -  L'2 

)c = - - =  A, RrL t - P / Y 2  
61 1 -P 13 The critical Taylor numbers, both for large and small spacings, are due to Chandrasekhar . 

We can see that Tc for large spacing i s  always larger than that for small spacing in  this 

particular case. Therefore, as far as the sufficient condition for stability i s  concerned, the 

criterion based on the small spacing results i s  always on the safe side for this non-magnetic 

couette flow. A general theory i s  still lacking at the present time. The physical reasoning 

seems to be that the existence of the boundary walls makes the flow less stable and hence, lower 

critical Taylor number. Although, the generalization of  the above conclusion to the magnetic 

case i s  not obvious, yet i t  serves an independent evidence that the stability criterion (4.23) 

w i l l  also be valid for large spacing as well e 

8, APPROXIMATE SOLUTIONS FOR &Ah 

From the numerical results given in Table 1, i t  appears that the formula 

C 
ocO+z 

Tc = 

gives a very good approximation to the true values for C&,> -1, where C e 3400. Moreover, 

for the same range of C& , the wave number (z 3.12) and the coefficient e,/G, (= -0.00//46) 

at which instability sets in, hardly seem to depend on do. This i s  not a surprising phenomenon 

at all, because, for No> -1 which corresponds to the case that the two cylinders rotate in 

the same direction in  Taylor's problem, the governing equations of  the present case closely 
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resemble that o f  the simple Benhrd problem. 

For the present purpose, i t  i s  convenient to translate the origin of the coordinate 

system to be midtway between the two cylinders. Thus let 

I 4 = x + -  
2 )  

so that the l imi ts of x are f 1/2. In terms of x , Eq. (6. IS), after substitution of 

(6.16), becomes 

3 
( D 2 - a ' ) q  = - U 2 J ( / + € x ) q - ,  (8.3) 

where 

5 = T ( d o + 2 ) / 2  and e =  2 M o / ( o ~ o + 2 )  , (8.4) 

and the boundary conditions are 

uj = (o'-a')vj = D ( D 2 - a 2 ) q  = O  for x -  1 / 2 .  (8.5) 

When E = 0, the characteristic value problem presented by Eqs, (8.3) and (8.5) reduces to the 

one for the simple Ben6rd problem (for the case of  two rigid boundaries) when formulated i n  

terms of the amplitude 8 of the fluctuations in  the temperature. 

, 

We first observe that according to the results of BenArd problem the lowest value of 5 

when e = 0, i s  17Q8 and occurs for a = 3.117. By (8,4) the corresponding value of T i s  3416/ 

(2 -I- d o )  ; and this i s  exactly the same as (8.1). Therefore, 

appears as the zero-order term in  a perturbation series, To obtain the high-order terms, 

we expand the various quantities i n  powers of  E. 

formulas (8.1) with C = 3416 

Thus, we write 

13 
Chandrasekhar has obtained a solution, to order E', which reads 
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(8.7) 

This formula gives Tc = 3390.0 and 65.228 for d0=-1 .O and 50.0 respectively; these 

values should be compared with 3390.3 and 65.234 given by the "exact" calculations. 

When OCO =-1.5, corresponding to E = -6, (8.7) gives Tc = 6364 which has an error less than 

one per cent from the "exact" solution, Tc = 6417. The above comparisons show that the series 

expansions in  (8.6) converge very rapidly. When oL0+ too, corresponding to E = 2, (8.7) gives 

3 3 9 0  
oc, +2 Tc = 

In view of the fact that for a0> -1 the first order formula (8.7) gives values which 

differ from the results of more exact calculations by less than one per cent, we can easily show 

that the principle of the exchange of stabilities i s  approximately valid for that range of  No . 
Chandrasekhar 

13 
showed, to the first order in  E, that this principle i s  valid for 0 > OC, > - I .  

His conclusion can, indeed, be extended to include the range of positive 

f- IUI - 

stability can be an important one when the condition (4.27) i s  violated. As we can see that when 

V and 7 are very small yet the magnetic Prandtl number L)/ 

there are conditions that can very well be favorable for the on set o f  overstability. Chandrasekhar 

. We observe that 

d o  < -1 , :he psslbi! ity cfcverstability should not be excluded. In fact, over- 

i s  very large or very small 7 

has pointed out that i t  would be particularly worthwhile to explore the case d o = -  2. 

9 .  DUAL ROLES AND COUNTERBALANCE FIELDS 

5 
The dual roles of viscosity and magnetic ditfuslvlty have been discussed by 'fib and 

3 14 
Lai , However, with the additional branch of solution taken into consideration here, their 

dual roles are more prominent and interesting. 

With Tc substituted for T in (6.17), solution of (6.17) and (6.18) yields the 

pyametric relationship between T,, and Tzc: 

r4. This branchhas been neglected by the previous authors. Therefore, some modification 
and additional computations are needed for their works, This wi l l  be given i n  a subsequent 
paper. 
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(9.1) 

For a given pair (&I,%), values of 06 are assumed, and the corresponding values of Tc read 

off from Table I, and TIC and Tzc are then computed. Figs. 6 and 7 are stability charts 

for various pairs of (&,,a2). We should note that, from (7.2), negative ( X I  corresponds 

to positive T I  only and positive OC, corresponds to negative TI only. Likewise, from 

(7,6), positive and negative a 2  correspondrto positive and negative T2 respectively. In 

the figures, the stable regions are indicated by arrows, We observe that the region which 

contains the origin i s  always stable. 

Since both TI and T2 contain 3 , in order to separate the effects of I, and 

r )  , the value of  T2/l T I  I 'I2 i s  plotted against TI in Fig. 8. The ordinate of the curves 

I S  

Tz /Ifi I "2 (9.3) 

which i s  independent of the viscosity. 

the stability charj in  Fig, 8. 

Figure 9 shows an enlargement of the fourth quadrant of 

If we hold a l l  other parameters fixed and vary L' , the flow 

W i l l  go through various unstable and stable regions as the horizontal dotted line a - f in  Fig. 9 

shows, In the region ab, the flow i s  unstable for the given pair ( dl=-2,0i,=-2). When 

V keeps on increasing, the flow wi l l  go through a marginal state to the stable region bc and then 

go through another marginal state to the unstable region cde and eventually go, through another 

marginal state, to the stabie region e i  where ihe VILGUU:, d;&put:wBm ---.-- I-- Is mrn&rninnn+- r.w-w......-... On the 

other hand, i f  we hold a l l  other parameters fixed and vary 

various regions as the vertical dotted line Ti-ashows. In the region 5 5 ,  the flow i s  unstable 

for the pair (-2,-2). When 7 keeps on increasing, the flow wi l l  go through the stable region 

7; E and end at the unstable region E a, where the magnetic dissipation prevails. The above 

7 the flow wi l l  also go through L -  

processes are also shown in Fig. 4 and later in Table II. In Fig, IO there shows an unstable 
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region @which i s  otherwise stable for the circulatory flow or magnetic field alone. An 

interesting phenomenon i s  that there i s  a region @where the unstable circulatory flow field i s  

counterbalanced by the unstable circular magnetic field such that the combined fields make a stable 

flow, This phenomenon appears to be rather striking at the first sight, 

striking at a l l  but a natural consequence of the criteria (3.16) and (4.23) i f  we take a close look 

at the stabilizing and destabilizing mechanism of the flow field. 

It is, however, not 

For the case d,=d2<-1, the basic flow and magnetic fields are of  the same shape as 

shown i n  Fig. 1 1 .  

stability lies in the violation of the Rayleigh's criterion in the layers between ab. A sketch of  the 

cell patterns when instability sets in  i s  also shown. The disturbance does not extend much beyond 

the nodal surface. Therefore, the nodal surface i s  essentially the dividing surface between the 

stable and unstable regions. Although, the region bc i s  stable, its stabilizing influence i s  not 

effective at a l l  to stabilize the flow i n  the unstable region ab. 

viscosity plays a predominant role in stabilizing or postponing the onset of instability in region ab. 

Similarly, for the basic magnetic field alone, the field i s  also unstable. This time, the origin 

Of the instability lies in  the violation of the Yih's criterion in the layers between bc. The 

region ab i s  stable, yet i t s  stabilizing influence i s  not effective to stabilize the motion in the 

unstable region bc. However, when both the velocity and magnetic fields are present, the 

stabilizing influence of  the velocity field in  bc i s  quite effective to stabilize the unstable magnetic 

field in  the same region. 

i s  quite effective to stabilize the unstable velocity field in  the same region. Thus, the combining 

fields can make a stable flow. 

For the basic velocity field alone, the flow i s  unstable, The origin of the in-  

In fact, in  this case, the 

. ., I .I. . . LiKewise, ihe siaurIIzlrty ii-ifliieiitz sf :he magnet!t fle!d in re2inn ab 

As a summary of  the roles of  the various agents in  a l l  previous discussions, two diagrams 

and two tables, from the energy conversion point of view between the basic fields and the 

disturbances, have been introduced. Fia. 12 i s  a simdified energy flow diagram for the non- 
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dissipative case, The ur - disturbance sets i n  first which wi l l  give rise to - and h, - 
disturbances, Therefore, we can regard L+ as energy receiving and distributing agent. 

Ue and h, act l ike energy converting agents which, together with the basic flow and 

magnetic fields, determine the direction and the rate at which the energy i s  being transferred. 

When dissipation comes in, the mechanism i s  modified accordingly as shown in  Fig. 13. 

with Fig, 13, Table II i s  introduced which shows the predominant term in  the different regions shown 

i n  the previous example i n  Fig. 9. The energy transfered between the left side and the right side 

of  the nodal surface i s  negligibly small; hence, the major energy transfer consists of three parts at 

each side. ur-disturbance) term i s  predominant, and 

Along 

The flow i s  unstable when the inflow (to 

i t  i s  stable when the outflow term i s  predominant. We can see that dissipation of  Ue due to 
I 

I 

2, affects the energy converting efficiency of  U B  , and dissipation of h, due to 7 affects ~ 

i t s  energy converting efficiency i n  the same manner. It i s  this dissipation o f  U@ and hB that 

modifies their energy transfering mechanism. We have called this modification as “diffusion” i n  the 

previous discussions. 

f ield i s  present. But i t  does reduce the degree of stability. 

magnetic field i s  stable at one side and unstable at the other side, then i f  r )  i s  increased, the 

diffusive action makes one side more stable while the other side less stable. The viscosity plays 

the diffusive role i n  the Same manner. In Table II, the viscosity and magnetic diffusivity i n  the 

regions a - d and 7i - aessentially plays the same role 

of the diffusive effectiveness between 2, and n i n  the right or left side of  the nodal 

surface that determines the stability, However, the magnetic diffvsivity does not play a 

corresponding part as the viscosity does i n  the region ef  , where viscous dissipation i s  predominant 

Therefore, as far as the velocity disturbance energy i s  concerned, the magnetic dissipation 

hardly has any effect on it; i t s  only effect i s  through the diffusive mechanism. Since it i s  the 

~ -. - .--e 

this  dlttusive eiieci, however, can never h i f i g  JboUf ifisfGbi!ify I f  Gn!.. I nnP “ ) I ”  

Fig. 13 shows clearly that when 

- diffusive role. It i s  the competion 

I 

velocity disturbances that determine the stability, we can conclude that the magnetic 
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diffusivity essentially plays a single role only - a diffusive role in  the energy conversion 

mechanism of  velocity disturbances. However, this diffusive role along, together 

counterbalance fields can have an effect of simultaneous stabilization and destabi 

with the 

ization. 

In closing the present discussion, a comparison of the present roles of  viscosity and 

magnetic diffusivity with that of  viscosity associated with Tollmein - Schlichting waves i s  

briefly summarized in  Table 1 1 1 .  It i s  clear from the table that they are distinctly different 

from one another. However, one feature i s  common to a l l  these three agents that they can have 

simultaneously stabilizing and destabilizing effects. In both cases, the viscosity plays dual role 

and has dual effect. But the magnetic diffusivity should not be qualified for the dual role, i t  only 

plays a single role with dual effect. 
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TABLE 1 .  The critical Taylor numbers Tc and associated 
constants for various values of 

0.0 
0: 5 
1 .o 
2.0 
3.0 
4.0 
5.0 
10.0 
20.0 
50.0 
+oo 

3.117 
3. 117 
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3.120 
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3. I25 
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3 I. 707ht10 
I .3659xl033 
I D  1377x10 
8.5235~ 10; 
6 . 8 1 3 2 ~ 1 0 ~  
5.674Ox 1 O2 
4.86 1 Ox 1 O2 
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-1.50 
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-1.70 
-1.80 
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-2.00 
-2.25 
-2,50 
-3.00 
-3.50 
-4.00 
u5.00 
-10.00 
- 0 0  

6.10 
5.43 
4.96 
4.61 
4.29 
4.00 
3.49 
3.30 
3.20 
3.17 
3.16 
3.14 
3.13 

- 0 0  
- 1 . 9 1 2 2 ~ 1 0 ~  5 -0.41001 

-9.962 1 x 1 O4 -0.29049 
-5.8885~10 -0.20709 
-3.8072~ 1 O4 -0.14771 
-2.6120~10? -0.10326 
-1.8677~10; -0.071389 
-0.9438~ 1 O4 -0.03 1633 
-0.5853~10, -0.019342 

+O. 06 1602 
+0.023515 
+O. 00841 1 
+o .002446 
-0 e 000004 
-0.000929 
-0.00 1259 
-0.001 2 17 

-3 .2074~10~ -0.01 1882 -0.001 
-2.1895~ 1 08 -0.009264 -0.00 1 
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+O .00009 1 
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+o. 000030 
+o. 000022 

3 
-0.50 3.118 2 . 2 7 5 3 ~ 1 0 ~  +0.001325 -0.001145 -0.000006 

-2.50 5.06 4 . 6 1 9 ~ 1 0 ~  + 0 2 8  1 0.01 16 -0.00 121 

-0 ~ 0000 1 8 
-1 5 0  3.20 6.4148~10: +0.011882 -0,001 181 -0,000055 
-2.00 4-00  1 ,8677~ 19 +O, a711389 -Q,aQQ929 -0.oQQ391 

-3.010 6.10 9..5%x3O5 +o ,4099 +0.0616 +O. 00 1 28 -0,000927 -0.000267 

t n nn3n79 r n  - 1  .ow 3 .  i27 ~ . ~ Y W X I U  TU.UUC)7/Y -O.OO! 140 

-3.50 7.10 1,771~10 +O ,5804 +O. I560  +O. 0 1 777 '0.000459 *0.0008 1 9 
-4.00 8.14 3 . 0 2 5 ~ 1 3  +0.7499 +O .28& +0.0626 +0.006064 tO.001045 
-00 2.035% 1182 a, 

values of positive Tc for negative Dc, from Ref. 13. a 
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TABLE II. Engergy balance sheet for the ur -disturbance 

- - P 

P P  
P P  
P P  

P 

P 
P 

P 
- - 

P 

unstable 
marginal 
marginal 
unstable 
marginal 
stable 

- a P 
P 

P 
- - 

P P  
P P  

unstable 
margi nal 
margi na I 
unstable 

P: predominant term 
(l/$: magnetic diffusion 

(1/ Y ): viscous diffusion 
( Y ) :  viscous dissipation 

TABLE 1 1 1 .  Comparison of the roles and effects of  the dissipative 
agents for Poiseville flow and magnetic Couette flow 

type of  flow agent role effect condition 

dissipation - stabilizing 
conversion - destabilizing sol id boundary 

Boundary layer or 
Poiseuille flow 

~ ~ 

dissipation - stabil i r ing  
stabilizing 

diffusion 
c desiabiliziriy 

stabilizing 
and 

destabilizing 

- [ and coun terkal ance f ie Ids 
Magnetic 

Couette 

flow coun terba I an ce fie I ds d i f fusi on 1 
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Figure 12. Energy balance diagram 

[ 1 - energy converting agent { ] - energy converting rate 
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